Understanding Logic Gates
Logic gates are fundamental components of digital circuits that perform basic logical functions. Each gate has a unique function defined by its truth table.
AND Gate
The AND gate outputs true (1) only if both inputs are true (1).
Truth Table: A B | Output 0 0 | 0 0 1 | 0 1 0 | 0 1 1 | 1 Calculation Example: Input: A = 1, B = 1 Output: A AND B = 1 AND 1 = 1
OR Gate
The OR gate outputs true (1) if at least one input is true (1).
Truth Table: A B | Output 0 0 | 0 0 1 | 1 1 0 | 1 1 1 | 1 Calculation Example: Input: A = 0, B = 1 Output: A OR B = 0 OR 1 = 1
NOT Gate
The NOT gate outputs the inverse of the input.
Truth Table: A | Output 0 | 1 1 | 0 Calculation Example: Input: A = 1 Output: NOT A = NOT 1 = 0
NAND Gate
The NAND gate outputs false (0) only if both inputs are true (1).
Truth Table: A B | Output 0 0 | 1 0 1 | 1 1 0 | 1 1 1 | 0 Calculation Example: Input: A = 1, B = 0 Output: A NAND B = NOT (A AND B) = NOT (1 AND 0) = NOT 0 = 1
NOR Gate
The NOR gate outputs true (1) only if both inputs are false (0).
Truth Table: A B | Output 0 0 | 1 0 1 | 0 1 0 | 0 1 1 | 0 Calculation Example: Input: A = 0, B = 0 Output: A NOR B = NOT (A OR B) = NOT (0 OR 0) = NOT 0 = 1
XOR Gate
The XOR gate outputs true (1) if the inputs are different.
Truth Table: A B | Output 0 0 | 0 0 1 | 1 1 0 | 1 1 1 | 0 Calculation Example: Input: A = 1, B = 0 Output: A XOR B = 1 XOR 0 = 1
XNOR Gate
The XNOR gate outputs true (1) if the inputs are the same.
Truth Table: A B | Output 0 0 | 1 0 1 | 0 1 0 | 0 1 1 | 1 Calculation Example: Input: A = 1, B = 1 Output: A XNOR B = NOT (A XOR B) = NOT (1 XOR 1) = NOT 0 = 1
Conclusion
Logic gates are essential for creating digital circuits. Understanding their functions and truth tables allows for better design and analysis of electronic systems.
Logic Gate Calculations
1. AND Gate Calculations
The AND gate outputs true (1) only if both inputs are true (1).
Input A | Input B | Output (A AND B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
2. OR Gate Calculations
The OR gate outputs true (1) if at least one input is true (1).
Input A | Input B | Output (A OR B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
3. NOT Gate Calculations
The NOT gate outputs the inverse of the input.
Input A | Output (NOT A) |
---|---|
0 | 1 |
1 | 0 |
4. NAND Gate Calculations
The NAND gate outputs true (1) unless both inputs are true (1).
Input A | Input B | Output (A NAND B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
5. NOR Gate Calculations
The NOR gate outputs true (1) only if both inputs are false (0).
Input A | Input B | Output (A NOR B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
6. XOR Gate Calculations
The XOR gate outputs true (1) if the inputs are different.
Input A | Input B | Output (A XOR B) |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
7. XNOR Gate Calculations
The XNOR gate outputs true (1) if the inputs are the same.
Input A | Input B | Output (A XNOR B) |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
No comments:
Post a Comment